A cyclic number is a natural number n such that n and φ(n) are coprime. Here φ is Euler's totient function. An equivalent definition is that a number n is cyclic if and only if any group of order n is cyclic.

Any prime number is clearly cyclic. All cyclic numbers are square-free. Let n = p1 p2pk where the pi are distinct primes, then φ(n) = (p1 − 1)(p2 − 1)...(pk – 1). If no pi divides any (pj – 1), then n and φ(n) have no common (prime) divisor, and n is cyclic.

The first cyclic numbers are 1, 2, 3, 5, 7, 11, 13, 15, 17, 19, 23, 29, 31, 33, 35, 37, 41, 43, 47, 51, 53, 59, 61, 65, 67, 69, 71, 73, 77, 79, 83, 85, 87, 89, 91, 95, 97, 101, 103, 107, 109, 113, 115, 119, 123, 127, 131, 133, 137, 139, 141, 143, 145, 149, ... (sequence A003277 in the OEIS).

References


Cyclic Group Group Theory Generating Set Of A Group Integer, PNG

Cyclic Groups

Chapter 4 Cyclic Groups PPT

Understanding the Properties of the Cyclic Group Z_n PDF Group

PPT SECTION 6 Cyclic Groups PowerPoint Presentation, free download